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Theoretical investigations of the vortex lattice and 
de Haas-van Alphen oscillations in the superconducting 
state 

P Miller and B L Gyorffy 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK 

Received 22 February 1995 

Abstract After initial calculations for a single vonex, where the Bogoliubov-de Gennes 
equations, corresponding to B simple tight-binding model, me salved using the recursion method, 
a fully self-consistent microscopic solution for the Abrikosov flux lattice is given. In the case of 
the latter. the observation of discrete Landau-like levels with a large order parameter suggests a 
form for the energy specmm which can give rise to oscillations of the thermodynamic potential 
as the magnetic field varies, even when there are no normal elect" in the system. These 
de Haas-van Alphen oscillations are studied analytically following a genenlized version of the 
Lifshitz-Kosevich argument, and il is found that their amplitude in the superconducting State 
is damped compared with what they would have been in the normal state. These results a ~ e  
supported by further, approxime, computations. 

1. Introduction 

The nature of the vortex state (or Abrikosov flux lattice) in type 11 superconductors was 
discovered by Abrikosov in 1957 [I] on the basis of Ginzburg-Landau theory, but a 
fully microscopic theory of this very complex phenomenon has become of interest only 
recently [Z, 3, 4, 5,  61. In this paper, we report on our investigations of the problem by 
solving the Bogoliubov-de Gennes equations in a magnetic field, using a real space method. 
The current interest in obtaining a fuller theoretical understanding of the mixed state has 
been spurred on by the observation of de Haas-van Alphen oscillations in superconducting 
samples 17, 8, 9, 101. We hope to shed some tight on these experimental findings, by 
studying the local quasiparticle density of states for a simple model. 

The problem to be solved is formulated as a tight-binding Bogoliubov-de Gennes 
equation, for the particle and hole local amplitudes U? and U) respectively. For the 
eigensolutions labelled by A, this is given by 

where & j  = [Un,/Z+Eg - /1] is the total 'on-site energy', the hopping integral, tiJ, does not 
include the on-site term, tii = €0, U is the electron-electron coupling energy, ni is the local 
electron number and p is the chemical potential. The above equation can be derived from 
a negative-U Hubbard model, via the HartreeFock-Gor'kov decoupling method [ll].  The 
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magnetic field enters the Hamiltonian through a vector potential in a Peierls phase of the 
hopping integral, 

P Miller and B L GyO@v 

fij H f i j  exp [ f 1; A(?-') . dr ')  = fi, 

The system is solved using the recursion method [12, 13, 141, which is a natural 
real space procedure for inhomogeneous tight-binding problems, adapted to study 
superconductivity in a magnetic field [15]. A self-consistent solution is found for the 
electron number, ni, and order parameter, Ai, on each site of a square lattice, as well as 
the fluxes through plaquettes of size a x a from currents, and hence vector potentials along 
links. The latter involves use of a discretized form of Maxwell's equations, described in 
appendix A. 

In the formalism of the recursion method [ 12, 13, 141 then, the local electron number 
for the ith site is found with a starting state, I@$) = lui), where /U:) corresponds to the 
orbital associated with site i. As it turns out, the local electron number is given by 

where the Green function, + iq), is the one calculated using the continued fraction 
representation of the recursion method, with the above starting state, and f(&) is the usual 
Fermi-Dm distribution. The function nY(c), implicitly defined in the above equation, will 
be referred to as the local particle density of states later. 

Continuing, to find the order parameter the recursion starts with the states I@:) = ]v i ) .  
I@{) = (:/&) Iui + vi), and \$E) = (I/&) Iuj + iui), and yields the Green functions 
Gii(s), Gii(&), and G$(E). Followlng the arguments in [U], the Green function required 
to calculate the order parameter is found to be 

(4) 
1 i CY:(&) = -Re [G$(s) - G ~ ( E )  - G ~ ( E ) ]  + -Im[G$(s) - G ~ ( E )  - G:(s)] 
2 2 

and the calculation proceeds via the usual formula 

1 m -1 
Ai = -U-Im x [/-Gy:(& + io) [l - 2f(s)] ds 

Similarly, the currents can be calculated, with the following choices of starting states: 
I$:) = U/&) Iui +ie-'"uuj) and I$:) = (I/&) Iui - ie-iAjjuj), In this case, the 
required Green function is 

Im GUU(s)] U = 4 [G{(s)  - Gc(&)]  (6) 
and it allows the currents to be calculated from 

I,, = Iij(E)f(E) 
m 

1 (7) 

L 
= - I m ( ~ ~ [ i e - i A , ~ G ~ ~ ( s + i q )  -2 - i e i A t ~ G ; ~ ( s + i ~ ) ] f ( s )  ds . 

x 
Clearly the function I&) is the current distribution in energy. 

The computations by the recursion method involved a highly parallelized code. The 
same method and parallel computer were used for the flux lattice solution as well as the 
single-vortex problem, so the following description applies to both. With such real space 
lattice calculations, a unique lattice site can be associated with each node (processor) of the 
parallel computer. The recursion method is carried out on each node concurrently, each with 
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its unique lattice site as the first basis state. The same method is followed by all the nodes, 
and the electron number, ni, order parameter, A i ,  and two link currents, Iij, from a site 
are found independently on each node. The data are combined, so that the new parameters 
for all lattice sites and the two-dimensional array of l ink  is updated together. One node is 
specifically assigned to camy out the iteration procedure and to pass the new starting set of 
parameters back to the others, until self-consistency is achieved. 

All calculations were carried out at zero temperature ( T  = 0) and with a large inter- 
action energy of U = -6t. These parameters were chosen for computational convenience. 
Working at zero temperature is an advantage, as the sum over the Matsubara-like poles on 
the semicircle [16, 151 is much more rapidly evaluated by a Gaussian-Legendre integral 
method [17], which corresponds to zero spacing between poles. The large value of the 
interaction energy was necessary in order to obtain reasonably accurate solutions. A stringent 
test of the accuracy of a self-consistent solution is the requirement that the sum of currents 
flowing along links towards any particular site must be zero. When the above choice of 
parameters was used, all the currents cancelled by better than one part in lo6, so one can 
have confidence in the accuracy of the solutions. 

2. The single vortex 

As a preliminary to calculations for the vortex lattice by the recursion method, we used it 
to investigate a single vortex in the superconducting state. Like the negative-U impurity 
problem [15], study of a single vortex is ideally suited to display the power of the recursion 
method. There is no translational periodicity in the problem, and it is essentially a local 
perturbation in real space. Nevertheless, the physical consequences for the vector potential 
and phase of the order parameter extend through all space, which severely challenges the 
numerical efficiency of the method. 

Much previous work has been done on the isolated vortex problem [18, 19, 20, 211. 
Approaches using Ginzburg-Landau theory and quasiclassical theory as well as solutions of 
the Bogoliubov-de Geunes equations by expansions in angular momentum states have been 
deployed to good effect. Results presented here both fit in with and add to this framework 
of previous results. 

The full set of quantities of interest in the vortex state also requires self-consistent 
calculation in the case of a single vortex. The real and imaginary parts of the order 
parameters, electron numbers, currents, fields, and vector potentials must all be obtained self- 
consistently, through all space. Of course, to render the problem tractable we shall seek self- 
consistent solutions only for a finite region of space and match these to approximate solutions 
on the outside. Note that termination of the recursion method after a finite number of steps 
means that distant sites do not effect the solution at the vortex centre on aparticular iteration, 
but any errors do move into the centre as the iteration continues. The Ginzburg-Landau 
solution was chosen then to act as a boundary to the self-consistent region. Therefore, the 
recursion method was used for a relatively small number of sites around the vortex centre. 
The linear size of this central region was much larger than the coherence length, to, but much 
less than the penetration depth, A. Hence the details of the order parameter do match very 
well between the self-consistent region and the Ginzburg-Landau region, but the currents 
and vector potentials can show some discontinuity. Consequently, more confidence should 
be placed in the structure of the order parameter found at the vortex centre than in values 
of the magnetic field. To obtain the correct flux quantization, self-consistency calculations 
would need to be carried out up to distances greater than the penetration depth, where the 
circulating current tends to zero. This was not done in these calculations. 
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The Ginzburg-Landau solution for the magnetic induction, B, which is used in the 
first iteration for the field variation, and is always kept for large radius, is given by the 
zeroth-order Bessel function of imaginary argumenf Ko(r):  

where, of course, r is the distance from the vortex centre at (0,O). Asymptotically, the 
function has the form [22] 

The above form gives the field variation as a continuous function of r .  To make use of 
it in the lattice model, the distance to the vortex line, r ,  is calculated from the centre of 
each plaquette. Multiplication by U* gives the flux through the plaquette. A parameter in 
the theory is the penetration depth, A, which is taken hereafter to be a 100 lattice spacings 

All calculations, whether for a single vortex or a flux lattice, were performed on a 
square lattice of sites, and only solutions which maintained a square symmetry were sought 
and found. A great deal of time was saved by making best use of the C4" symmetry. Only 
the quantities associated with one octant of the square unit cell need to be calculated, as 
all sites within the square are related to a site within the octant by a symmetry operation. 
The geometrical symmetry of the Hamiltonian, which is not further broken in our solutions, 
means that thc electron number, and magnitudes of the order parameter and link currents, 
are the same on sites related by symmetry. Care must be taken with the phase of the order 
parameter and value of link vector potentials, but a simple choice of gauge maintains the 
symmetry. 

It should be noted that the problem is solved in two dimensions only. Practical 
considerations of computational time force such a limitation on the calculations. Any 
qualitative effects are expected to be present, as the symmetry of the problem is two 
dimensional. The significant effect of the motion in the direction of vortices is to spread 
discrete states into cosine bands. The above points are true for the vortex lattice as well as 
the single-vortex calculations. 

A full solution of the single-vortex problem was carried out on 128 nodes, so a 
self-consistent determination of the various quantities such as electron number and order 
parameter was made for sites up to 15 lattice spacings from the central site in the (1. 0) 
directions, and 14 diagonal spacings (of &U) in the (1,l)  directions. 

The variations of the order parameter, and distribution of currents and fields, are similar 
to those for one unit cell of the flux lattice, to be discussed later in connection with figures 5- 
I. The results are taken in the symmetrical case of half filling, so the electron number is 
the same on each site. It is apparent that with such a large value of -U/ t ,  which leads to 
a large value of the order parameter (A X U t ) ,  the cohercnce length is of the order of the 
lattice spacing-the order parameter approaches its full magnitude on sites neighbouring 
the central site where it is zero. The anticlockwise circulating currents are seen to be a 
maximum only one lattice spacing from the vortex core site, close to a cohercnce length 
from the centre, as expected. 

As part of our general strategy for studying the quasiparticle spectra of an 
inhomogeneous state, we have calculated the local particle density of states, defined by 

(h = 100a). 
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For a number of different sites OUT results are displayed in figure 1. In connection with them 
there are several remarks in order. Firstly, the main band of states does not reveal Landau 
quantized levels, as one might have expected. Due to the small magnetic field, their spacing 
would be too small to be resolved using the present method. Secondly, there is a state at 
zero energy (i.e. lying at the chemical potential), whose main amplitude is on the central, 
normal site. This is a localized state, first discussed by Bardeen and coworkers [23], whose 
amplitude falls rapidly away from the central site, within a few lattice spacings. 

Figure 1. Local densities of states for a single vortex 
on the following sites: (a) site (0, 0); (b) site ( I ,  0); 
(c) rite (1, 1); and (d) site (15, O), where (0. 0)  is the 
central site of the vortex. 

4 . 2 0 2 4  
Energy I t  

Figure 2. y current canying dismibutioo in energy for 
a single vortex (a) from site ( I ,  0); (b) from site (2, 0); 
(c) from site ( I .  1); and (d) from site (15, 0). 

The next state to notice has zero amplitude on the central site, but has a large amplitude 
Its energy is at just less than 2t which puts it still within on sites (1, 0) and (1,l). 
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the superconducting gap. Whereas the lowest-energy state (at the chemical potential) 
is similar to an s state, having a central maximum, this next state corresponds to a p- 
like state, and hence has a node at the centre. Labelling the states by the irreducible 
representations of the CdV symmetry group, the central peak is an At state, and the next peak 
a degenerate combination of Ex and Ey states. These are states like those studied by Gygi 
and Schluter [20] and Pottinger and Klein [24]. Using the recursion method, the individual 
eigenstates cannot be studied by observing their wavefunctions, but their contributions to 
different Green functions can be seen. For example, the states which contribute to the 
current between sites i and j can be identified, by plotting the function I ; j (&)  as defined by 
(7), for the same energies, E ,  as the density of states on the two sites. This Green function 
depicts the particle contribution to the current as a function of the energy of the state. Its 
integral up to the chemical potential gives the current between site i and j .  The function is 
shown in figure 2 for the links extending in the positive y direction from sites (1, 0), (2, O), 
(1, I), and (15,O). As expected, the fully symmetric, central state does not contribute to the 
current. The other discrete states do give rise to currents though, with a large contribution 
coming from the E states. 

A qualitative understanding of the contributions to the current at different energies as 
shown in figure 2 can be readily obtained by the following simple argument involving 
a uniform current carrying superconducting state, without a magnetic field. The solution 
of the Bogoliubov-de Gennes equation for such a one dimensional superconductor is as 
described by de Gennes in [21], and it will be reproduced here for the particular case of a 
one-dimensional lattice (i.e. a chain). A current flow in the positive x direction is described 
by an order parameter of the form A = IAlexp[iqx]. Around a vortex, the current is 
produced by such a phase variation, but around a circle in real space instead of along a 
straight line. Well within a distance of the penetration depth from the centre of the vortex, 
the vector potential has little effect on the eigenstates, and is far from cancelling the phase 
variation of the order parameter. Hence it can be neglected in this qualitative discussion, 
as its contribution to the kinetic energy is greatly outweighed by the contribution due to 
the phase gradient of the wavefunctions. The two contributions are only Comparable at 
distances where the line integral of the vector potential (and hence the flux enclosed) is of 
the order of the flux quantum. In other words, the paramagnetic current term dominates 
near the vortex centre, and only at large distances is it cancelled by the diamagnetic term. 
So a one-dimensional model with its variation of the order parameter can be used to give 
insights into states carrying a circulating current. 

In order to explain the form of the current carrying function, Ii,(&), we shall now 
present an analysis of de Gennes' one-dimensional current carrying solutions. In the case 
with A = [AI exp [iqx], the current is approximately equivalent to that circulating at a 
distance d,  where q = l / d ,  from the vortex centre, with x on a set of discrete points along 
the perimeter of the circle. The eigenstates have the form 

P Miller and B L Gyom 

and satisfy the eigenvalue equation 

where as usual, t is the hopping integral and U is the lattice spacing. The system is at half 
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filling, such that €0 + U12 - p = 0. The eigenvalues are given by 
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Ek = 2t sin(ka) sin(qa) * J [ - Z t  cos(ka) cos(qa)]’ + 1 ~ 1 2  (13) 

and the corresponding eigenvectors are specified by 

2 IAI’ 
2 .  Vk = 

IAI’ - [2t cos(ka)cos(qa)] & J[-Zrcos(ka)~os(ga)]~ + 1AI2 ( 
The above formulae, though quite complicated, do contain simple symmetries which explain 
the form of the current distributions in energy. Firstly, note that the current contribution of a 
state labelled by k is now proportional to sin(ka+qa) (this is the particle contribution, given 
by u* (x )u (x  + a ) ;  the hole contribution is the same from the state of opposite energy, and 
opposite wavevector). Hence a state such that k‘ = k + a /a  has oppositely directed current 
to the state labelled by k. Firstly, it can be seen that there is an overall antisymmetry about 
the chemical potential in the current carrying states. A negative-root state, with wavevector 
k, has energy of opposite sign, but equal and uk amplitudes, so equal but opposite current 
to the state with wavevector k’ = K + k  and positive energy root. So each state has a mirror 
state of opposite energy and current, this antisymmetry remaining in states carrying current 
around a vortex, as seen in figure 2. Hence, if all the states were occupied there would be 
no overall current flow-a result which must always hold by the orthogonality in real space 
of all the eigenvectors. 

A second qualitative feature of the current carrying states around a single vortex is the 
change in sign of the current direction within a superconducting band. This feature can 
also be understood from the one-dimensional solutions given above. We can just consider 
the positive eigenvalues, which form a separate, upper band if [AI z l2t sinqal. The states 
with wavevectors kl = k and kz = a - k have the same energy, and give rise to a current 
contribution at that energy of 

Zij ( E t )  cx ]up, I2sin (ka + qa) + Ius, I’sin (ka - qn) (15) 
that is 

~ i j ( $ )  = ~uk~’sin(ka+qa)+ bk1’sin(ka-qa). (16) 
In the following discussion, we just consider k in the range 0 < k c xf2. For k > q and 
certainly for k F;: x /2  the above current contribution of equation (16) is clearly in the same 
direction as q.  These states are high-energy states, near the top of the positive energy band. 
Within the same band, the states with wavevecton k3 = -k and k4 = x + k have lower 
energy than Ek and indeed those corresponding to k F;: a12 which have k,, k4 F;: -x/Z are 
near the bottom of the positive energy band. They give rise to a current contribution of 

Zij ( E t k )  cx -ut sin (ka - qn) - u t  sin (ka + qn) (17) 
that is 

Zij ( E t )  = -U: sin (ka - qa) - U: sin (ka + qa) (18) 
It is seen from equation (18) that if k > q then the current contribution is in the opposite 
direction to q and the supercurrents. Hence the direction of currents changes sign through 
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the positive energy band, being in the direction of the supercurrent at the top of the band 
and opposed to it at the bottom of the band. This is a property which is seen in the current 
carrying states of the single vortex. 

In summary, the spectrum of singlevortex states is well described by an energy band 
of superconducting states w i n g  current around the vortex-these can be thought of as a 
series of racetrack states [E]  of varying confined radii. There also exist discrete levels due 
to states localized in the vortex centre, which have a large energy spacing (and are few in 
number) because the coherence length, which defines the localization region, is very small. 
Apart from the symmetric A, state, the localized states also contribute to the circulating 
current. 

3. A lattice of vortices. 

In order to study the vortex lattice, a square lattice of vortices was assumed. Such a lattice 
should give all the qualitative features of a triangular lattice as found by Abrikosov [I], 
except those associated with triangular symmetry. When the underlying crystal lattice is 
a square lattice, it is naturally far easier to superimpose a commensurate square vortex 
lattice-though a triangular lattice with a much larger unit cell than the vortex cell size also 
can be fitted [26]. 

To simplify a very complicated problem, we used a square unit cell, having the same 
symmetry as the single-vortex solution of the previous section. Even in this case, a very 
complex procedure was required, to impose on the system the basic properties that a full 
lattice solution must possess. For example, the order parameter is zero at the central site 
of each unit cell, and its phase increases by 2n around each zero [27]. The phase of the 
order parameter cannot both be a continuous function, and be periodic, if it is to have the 
above property 1281. The only way to maintain its periodicity is to treat each unit cell in a 
different gauge. The complete system was solved in a particular gauge chosen according to 
the requirement that the configuration of charges, order parameters, and vector potentials, 
{n j ,  Ai, A i J } ,  in one unit cell had the most symmetric form. From this configuration, all 
the other configurations in the other unit cells are calculated, by carrying out an appropriate 
gauge transformation. The procedures of the recursion method were carried out using a 
Hamiltonian which is not invariant upon translations between vortex cells, but which is 
given through all space in one specific gauge. Self-consistent calculations were made as 
usual, but so as to give the set of quantities {nj, Ai, I j j ,  Qn, Ai,} in the first unit cell only. 
The corresponding quantities in  other unit cells are obtained by the transformations given 
below. The indices 01 and @ label the unit cell number, in vortex lattice spacings, from the 
central cell. The indices i and j label the coordinates of a lattice site within a unit cell, 
such that the central site is labelled by (i, j )  = (0,O). 

n 9  = nOO rJ ' I  

A'?! I J  = ATexp r J  

1 9  = 190 (19) 
[ 21x,, ' "1 

x,.kl t i .k i  

The vector potential above is defined along the link (i, j )  n (k, I )  so that 

A:& = 6' A@') . dr'. 
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The choice of gauges is such that both the phase of the order parameter and the vector 
potential are single valued along the boundaries of unit cells, with a symmetric gauge form 
of the order parameter’s phase in the central cell. Such a criterion leads to the choice 

cyaj pai 
n n 2xij = - - - +(a + 1) (p  + 1)n  + n 

where the unit cell has size nu xna so contains n x n sites. The phase of the order parameter, 
A, and the corresponding gauge parameter, x ,  are depicted in figures 3 and 4 for the four 
unit cells ((U, 0 )  = (0.0). (1,0), (0, l), and (1, 1). Note that Bloch’s theorem can be used 
with a supercell of 2 x 2 vortex cells using the above gauge function, corresponding to that 
of Canel [29] provided the phases there are corrected with the missing factor of i. 

4 ......................................... \ ........... t ..........._........ 
. . ~  

-... i/ 
- - I  

i 1 \ 

y .......... s ............ t ............ / ....... 

‘r 
q I 

! 

i 1 

..A .......... d .........- 

/ e  

\ 

r / 

. . . ~  ........ ~ 

! 

Figure 3. 
schematically through Four vortex cells. 

The phase variation of the order parameter 3s a continuous function, shown 

With such a scheme in place, self-consistent solutions were found in the same manner 
as for a single vortex. A number of different-sized unit cells were used, corresponding to 
different average magnetic fields through the sample. The cells were all square, with the 
vortex centre on the central site, so each cell contained N = 2n x 2n plaquettes, where 
n is an integer. Solutions were found for all n up to n = 15, which corresponds to a 
magnetic field given by BaZ = h/ZNe where N = 900 (and the flux per plaquette is 
p / q  = 1/1800 in units of the electronic flux quantum, hle ,  which Iigures in the normal 
state, namely the Hofstadter, problem [30]). The calculations were cmied out at half 
filling, giving n = 1 on every site, and for a large interaction energy of U = -6t for the 
same reasons as given for the single-vortex calculations. Usually the recursion method was 
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- \ I  
i .. I....... L .................................... - - -  I -  - 

- -  I -  - 

- - .  , -  - 
................................................ 

............................................... 
‘r / -  - 

Figure 4. The corresponding vdues of the gauge pmeter,  given as an angle: exp[Zi~], 

carried out on each site to give thirty coefficients exactly, and this was extrapolated up to 
more than 1OOO. The extrapolation was not generally a good fit, as the coefficients were 
not following any obvious pattern. This means that fine detail in the spectrum should not 
be taken at face value, although integrals over the weight of the density of states is still 
given to excellent accuracy. Consequently, integrated quantities like ni, Ai, and It, were 
accurately determined, as evidenced by the cancellation of the currents to any particular 
site. 

The form of the self-consistent solution for a magnetic field corresponding to Bn2 = 
@ / e ) ,  that is a vortex cell containing 8 x 8 plaquettes, is given in figures 5-7. The 

phase variation of the order parameter is as depicted in figure 3, increasing by 27r around 
each vortex centre, while its magnitude, figure 5, is seen to plummet to zero at these points. 
The short coherence length, resulting from the overly large value of the order parameter 
(and interaction energy), is small enough to allow the normal state hole to be almost fully 
healed within one lattice spacing. The order parameter is then approximately constant in 
magnitude between vortices. A point in the results. which cannot be seen from the picture, 
is that the maximum in the magnitude of the order parameter occurs a few sites from the 
vortex centre, and in the diagonal (1, 1) direction. This maximum is shallow, but naively 
one would have expected it to be at the furthest point from the vortex centres. This is 
thought to be an artifact of the extremely short coherence length here 1151. 

The current distribution for one such unit cell is shown in figure 6. The mows,  whose 
lengths are proportional to the current along each particular link, depict a circulating flow 
around the vortex centre, as expected, with no flow along the radial (1, 0) directions. Thc 
currents are at a maximum nearest the vortex centre, due to the short coherence length, and 
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Magnitude of order parameter for 8x8 vortex cells 

Figure 5. Magnitude of the order parameter on sites of four vortex cells with 8 x 8 unit cell. 

......................................... 
l l l l  1 1 1 ;  . < . < . < . + . * . * . < . . .  
1 1 7 '  I A I ;  

* < .  4 . 4 .  . C . C . + .  < .  .. 
l ' t t  

l l t t  b t l ;  .. .. . * . - .+ .+. .  ... 
; 1 1 1  1 1 1 ;  

; l ' l  1 1 1 1  

. . .  . . . . * . - . e  . . . . .  

......................................... 
Figure 6. The current distribution form 8 x 8 vortex cell. 

are zero along the unit cell boundaries, as is necessary by symmetry. In fact, it is the latter 
point which determines the total flux within the unit cell to be the superconducting Eux 
quantum, h/Ze. It is the current distribution which maintains the magnetic field variation 
shown in figure 7 for four such vortex cells. So the magnetic field is changing most near 
the vortex cenbes, and is more constant where the current is small. Naturally the maximum 
field is at the vortex centre, but note the overall field change is of the order of one per cent, 
as the penetration depth (A = 1OOa) is much greater than the vortex spacing @a).  

Further information can be obtained from the density of states. We shall investigate 
both the density of states local to an individual site, and the total density of states. The 
latter is the sum of the former over all sites in a vortex cell. Unfortunately, interesting 
features of the magnetic field structure would not be observable for large unit cells where 
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Magnetic field variation for 8x8 vortex cells 

Flux through plaquette 

Figure 7. The magnetic field through piaquettes of four vortex cells with 8 x 8 unit cell. Note 
lhe absolute variation is only of the order of one per cent4he zero is off the graph. 

the field is low. This is because the Landau level spacing would be less than the detail 
given in the density of states by the recursion method. An understanding of this problem 
is gained by realizing that for the full details of orbits to be seen in the spectrum, accurate 
coefficients must be found in the recursion method, for Lanczos states which extend over 
the whole of the Landau orbits. The criterion in the normal state is that for a magnetic field 
with p / q  electronic flux quanta ( h l e )  per plaquette, the recursion coefficients, a, and b,, 
must be calculated out accurately up to n > q. This is because all q Landau-like levels 
within the band will correspond to orbits containing up to q electronic flux quanta, and 
hence with area q x q.  Thus to stand a chance of observing the effects of any quantization 
of the levels in the superconducting state, a large field and small vortex cell must be used. 
Consequently, in what follows, the densities of states are given for a self-consistent solution 
of a 4 x 4 unit cell. In this case there is one superconducting flux quantum (h /2e )  per 
sixteen plaquettes, and for the elecwonic flux quantum (h le) ,  the magnetic cell contains 
32 plaquettes, so p / q  = 1/32. In figure 8(a) we display the local density of states for 
the centre of a vortex, that is site (0, 0). As in the case of a single vortex discussed in 
the previous section, the large peak at the chemical potential corresponds to an essentially 
localized s state at the vortex centre. Of course, for the infinite array of vortices with which 
we are concerned here, such localized states form a band. However, we find a negligible 
bandwidth, and the amplitude of the state is exponentially reduced on moving away from 
the vortex centre. Figures 8@), (c) and (d) show the local densities of states on sites (1, 0), 
(2* 0), and (1,  1 )  respectively. Note the sites neighbouring the vortex centre reveal angular 
momentum states like those of the single vortex. Further from the vortex centre, there is a 
clear discretization of the superconducting band, which is also revealed in the total density 
of states, figure 9(a). For comparison, the density of states for a normal band in the same 
magnetic field is given in figure 9(b). 

Following on from our study of the current carried by links around the single vortex, 
plots of the same functions, l j j ( ~ ) .  for the flux lattice, for the y currents from sites (1, 0) 
and (1, l),  are given in figure IO. The states are of course discrete now, due to the shung 
magnetic field, but the overlying envelope function is very similar to that for the single 
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Figure 8. Local densities of states for various sites of a v o M x  lattice, with 4 x 4 unit cell (a) 
on sire (0, 0); @I) site (1, 0); (c) site (2, 0): and (d) sire (I, I). 

vortex. Hence the principal effect of the magnetic field is to break up the spectrum into 
sharp peaks. At least near the vortex centre, where the phase gradient of the order parameter 
dominates the vector potential, other effects on the states appear less significant. 

In short, the most striking feature of the above density of states curves, and the central 
result of this paper, is that in both the normal and superconducting state, the effect of a 
magnetic field on a spectrum is to split continuous bands into discrete Landau-like peaks. 
This is already known to occur within the normal regions of a type I1 superconductor [U], 
but here we find it just as pronounced in the superconducting regions where the order 
parameter has constant magnitude and is large. The separation of levels is inversely 
dependent on the zero-field density of states at that energy, so many discrete levels are 
squashed into the singularities at the edges of the gap in a superconductor, in a similar way 
to those at the van Hove singularity at the centre of the two-dimensional band (figure 9(b)). 
Of course, in the vortex state, the situation is more complex, because the magnetic field has 
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(I / Ib)  (hi&). and (b) the normal stale density of states in the same magnetic field. 

changed the structure of the potentials which broadens the peaks in the density of states. 
Thus, it may be said that the superconducting ground state is formed from Cooper pairs 
whose members individually occupy discrete Landau levels. Note that whilst many theories 
start solving the Bogoliubov-je Gennes equation by expanding the solution in terms of 
Landau orbitals 12. 3, 4, 5, 61, we did not do so here. Thus our results can be taken as 
convincing evidence that, at least in the parameter range studied. the Landau levels play 
the above role. Clearly, this suggests that the superconducting ground state energy should 
oscillate with magnetic field variation [2, 31 as in the normal state. Therefore we conclude 
that normal electrons may not be necessary for the de Haas-van Alphen effect, In the 
following section we shall show that this is indeed the case. 

4. Oscillations of the thermodynamic potential 

To study the possibility of de Haas-van Alphen oscillations in the superconducting state in 
a similar vein to the work of Lifsbitz and Kosevich in the normal state 1311, we use the 
form of the generalized thermodynamic potential [ I l l  

1 CP = -- bog {I + exp [-p (e : ) ) ] }  - log { I  + exp [p (e:))]} 
‘ f l  A 
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, I 
-4 -2 0 2 4 

Energy I t  
Figure 10. y current disvibution in energy for links of the flux lattice with a 4 x 4 unit cell: 
(a) from site ( I ,  0)  to ( I ,  I )  and (b) from site (I, I )  to ( I ,  2). 

In the above expression, e?’ is the quasiparticle energy of the normal state, measured from 
the chemical potential, and aep’/ap = -1  for all A. E,, is the positive quasiparticle 
energy eigenvalue of the Bogoliubov-de Gennes equations. To lay the foundation of further 
discussion, we now substantiate the above expression for fisc. 

Explicit differentiation of the above grand potential leads to 

using the identity 

proved in appendix B; this yields the conventional formula for the total number of electrons, 
N .  
- 

Similarly, differentiation with respect to the order parameter leads to 

Requiring that the equilibrium values, { A i ] ,  minimize the grand potential in equation (22). 
and therefore setting the right-hand side of equation (25) to zero, leads to the correct gap 
equation for the order parameters, ( A i ) ,  provided 
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as shown in appendix B. Note that as aCZSc/aAi = 0, to first order oscillations in the order 
parameter do not explicitly affect the thermodynamic potential. The above differential 
relations, and the fact that the normal state thermodynamic potential must be reached in the 
limit A n 0, verify the form of equation (22) for the grand potential in the superconducting 
state. As will be evident presently, it is a very useful starting point for discussing the 
dependence of Qsc on the external magnetic field, B .  

With the above preliminaries, let us now work out the diamagnetic moment of a metal. 
For the normal state we find 

while for the superconducting state 

A full calculation shows that in the above two equations (27) and (28) the contribution to 
the oscillatory part of the magnetization is of order E F  fhw, (= nF > 1) greater for the 
second terms than the first. Hence, to lowest order in I / n F ,  the first terms, of the form 
Q / B ,  can be neglected in a discussion of contributions to the de Haas-van Alphen effect. 
Consequently. the dominant effect of superconductivity on the oscillatory magnetization is 
seen to be due to the appearance of the particle probability amplitude, Iu'I', in the second 
term of equation (28). This results in the energy cut-off for electron occupation of levels 
being broadened not only by the Fermi function,  EA), on the scale of kT, as in the 
normal state, but also by luil , which falls from unity to zero over an energy range of order 
A. 

This effect is illustrated in figure I 1  which provides a simple view of the process. As 
the magnetic field is increased, the effect of the increase in gradient of the lines of E. 

against n can be viewed as a spreading of the discrete states from left to right as their 
energy separation increases. In the normal state, filled electron states which contribute to 
the total energy, after increasing in energy, become emptied as they pop up through the 
chemical potential (which does not vary much for 3D materials, and indeed is constant for a 
half-filled band in the 2D case that we studied in section 3). So the well known result is that 
the total energy and hence magnetization oscillates at the frequency with which the electron 
states cross the chemical potential. The hole states mirrored in the chemical potential can 
be ignored in the normal state. 

In the superconducting state, there are two differences. Firstly, the dispersion curve 
need not cross the chemical potential due to the superconducting gap. Secondly, particle-like 
states are depleted of electrons (and hence reduce their contribution to the total energy) over 
a region of order 1A1 before they reach the gap. The electrons move into the corresponding 
hole-like state (with (U\* > lu[*) in this region and the particle-hole coupling means that 
these states cannot be ignored in superconductors. It is not until a particlelike state is at 
an energy of order 1A1 above the gap that its corresponding hole-like state is effectively 
emptied of electrons, so its contribution to the total energy is negligible. This very gradual 
emptying of electrons from a state over an energy range of the order of IAI (rather than an 
abrupt depletion on crossing the Fermi surface) reduces the amplitude of the oscillations, just 
as a temperature does by broadening the Fermi-Duac occupation function at the chemical 
potential. In fact, the functional forms of the two independent damping factors are seen to 
be somewhat similar. 

2 
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Particle State 

0 Hole State 

P 

Ftgure 11. Particle-like states move up in energy with increasing field. while h o b l k e  states 
move down in energy. Only particle amplitudes contribute to the thermodynamic potential. 

Having established the form of the grand potential in the superconducting state, we can 
use the simplified semiclassical approximation 

where EFL = en + 6 - /I. Such a form is suggested by the observation of the density of 
states for the vortex lattice of the previous section 3 (neglecting the normal region states) 
and it also follows from an approximate semiclassical theory [32] given in appendix 6. 

Using equation (29), the method of Lifshitz and Kosevich [31] can be followed in 
evaluating equation (22) for Qsc. The result contains those terms found in the usual 
normal state problem, unless indicated. The combination of the first two terms in the 
thermodynamic potential (equation (22)) gives no oscillatory contribution, while the next 
two terms yield 
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for the oscillatory contributions to the thermodynamic potential. Upon differentiating the 
above expression with respect to B,  it contributes to the magnetization as 

which has the same form as in the normal state. In particular, Ace')(&) is the area of the 
extremal orbit ofthe quasiparticle around the normal state Fermi surface. perpendicular to the 
magnetic field. Clearly the frequency of oscillation is unchanged by superconductivity. On 
the other hand, the damping factors within 01, due to the terms in curly brackets of equation 
(30), are now quite different from the corresponding factors in the normal state [33]. In the 
latter case, the damping term in 021 is given by h/sinh(h), where h = 2n21kTm*/heB, and 
is due to the thermal broadening of the distribution function, f(&). For the superconducting 
state we find a simple analytic solution only in the limit where A >> kT.  In this case, the 
Fermi factor can be treated as unity for states below the gap and zero for those above the 
gap. This leads to a damping factor in of aKl(a), where the coefficient a is 2nl times 
the gap parameter, A ,  divided by the normal state Landau level spacing at the chemical 
potential, hoc;  namely a = 2nlA/hwc .  From the asymptotic form of the Bessel function 
of imaginary argument at large a it follows that 

K l ( a )  c G e - '  for a H 00 (32) 

where it is seen that when the order parameter exceeds the Landau level spacing, an 
exponential damping term is introduced. The factor aKl(a)  approaches unity as 1 - uz as 
the order arameter approaches zero, and the normal state is reached in a manner consistent 
with e-CA (where c is a constant) as suggested by Maki [34]. The function a K l ( a )  is 
plotted in figure 14 to give an indication of its effect. 

Note that the above results show that de Haas-van Alphen oscillations can exist when 
normal regions of a sample are neglected, and the whole Fermi surface is gapped in the 
superconducting state-even at zero temperature. The oscillations come from oscillations 
in the superconducting ground state energy. Of course, the above results have been derived 
by using only an approximate treatment of the semiclassical theory in appendix C, and the 
scattering due to phase variation of the order parameter is not expScitly taken into account. 
Note however, that the phase variation is included implicitly since neglecting VZ - e A  
prevents large current terms inRuencing the spectrum. Clearly, the current proportional to 
VZ - eA would increase with A(r) at large T unless the phase of the order parameter 
varies so as to maintain a finite current. 

? 

5. Simple computational results 

To lend further credence to the above analytic results, we have performed a number of 
approximate numerical calculations of the free energy in a magnetic field. First we studied 
a two-dimensional square lattice Hubbard model in the normal state. This is effectively the 
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Figure 12 The normal state density of states for magnetic fields of a) plq = $; b) p / q  = b; 
and c )  p/q = f where p / q  is the magnetic flux per plquette. Boz, in units of he elecu~nte 
flux quantum, hie.  

same system whose spectrum of allowed energy states as a function of magnetic field per 
plaquette was made famous by Hofsbdter [30]. The calculations are canied out using the 
recursion method, and for a half-filled band. The total energy was calculated as the sum, 
up lo the zero of energy. over all the Hofstadter states at a given field. The densities of 
slates for fields corresponding to +, i ,  and f of a flux quantum per plaquette are shown 
here in figures IZ(aHc) as calculated by recursion. If the chemical potential is at the zero 
of energy, the situation as the field increases is a little different from that for free electrons. 
With free electrons, the Landau levels all increase in energy with field, and their spacing 
increases uniformly with field, so levels move up through the chemical potential as the field 
is changed. In the Hofstadter spectrum, this is true for the lowest energy levels, where the 
zero-field band is approximately parabolic. However, the states at the top of the band also 
have an approximately parabolic dispersion in the normal state, but with opposite curvature, 
so have negative effective mass and come down in energy with increasing magnetic field. 
The overall effect that is seen in the Hofstadter spectrum as the field is increased is that 
levels near the edge of the spectrum move towards the centre, where they collide and cancel 
each other. The degeneracy of the remaining levels increases to keep the total number of 
states constant. This effect can be seen in figures 12(a)-(c) as the field increases from 
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p j q  = 3 to to i .  In between these simple, rational fields, the spectrum follows a richly 
structured evolution as the field changes, with splitting and reorganization of bands. This 
can be seen from the full spectrum. Nevertheless, this complicated behaviour leads to a 
smooth variation of the total energy. From the densities of states shown, it is apparent that 
for simple rational fields, p j q ,  with p = 1, the total energy at half-filling is a minimum for q 
an even integer, and a maximum for q odd, when occupied states are closest to the chemical 
potential (a constant at zero energy). This is what is seen in the variation of total energy with 
magnetic field, as shown in figure 13. The oscillations for Hofstadter levels are naturally in 
I j B ,  just as they would be for Landau levels of elementary discussions [35]. We get well 
defined oscillations because, thanks to the recursion method, we are able to calculate R for 
arbitrary fields. Obviously, this is due to the fact that, for this real space method, there is 
no requirement for a supercell to exist commensurate with the lattice spacing. 

The effect of superconductivity on these oscillations can be seen in a very simple manner. 
Without carrying out a fully self-consistent calculation to find the vortex lattice, an off- 
diagonal particle-hole coupling term (or pairing potential), corresponding to a mnstanl order 
parameter, can be introduced into the Hamiltonian. The recursion method as formulated for 
superconductivity [I51 can then be carried out and the total energy calculated as a function 
of magnetic field, for different values of the pairing potential, A. Computationally the 
method is rapid, as each site is physically the same so recursion need only be carried out 
from one site to find the density of states. 

The results are shown in figure 13 over a small field range, and for a number of values of 
the off-diagonal pairing potential. The coupling, if small, has little effect on the oscillations, 
but eventually damps them out, as expected. The finite-temperature method of Nicholson 
and Stocks [I61 was used to calculate the energy, at a temperature such that kT = 0.01r. 
In the uNts given, the continuum limit Landau level spacing, hw, = heBjm*, is equal to 
4 z t p j q  where the continuum effective mass of m' = A2/2ta2 has been used [32] .  This 
means, for example, that when the magnetic field has p / q  = 0.01, a pairing potential of 
A * 0.12 would correspond to a typical Landau level spacing. It is however a little 
difficult to be precise where the spacing of Hofstadter levels is concerned, as it is apparent 
from the spectrum that the level spacing is far from constant, and indeed approaches zero 
(corresponding to an infinite effective mass) at its centre. 

However, an attempt can be made to compare these results to the analytic ones of the 
previous section for the magnitude of damping by the order paramcter. At two different 
fields ( p j q  = and p j q  = &) the magnitude of the oscillation, as a fraction of that in 
the normal state, is plotted against the pairing potential, in the form 2nA/hwc = Aqj2tp ,  
in figure 14. The thermal damping in the normal state gives values for hlsinhh (where 
h = Zz*kT/hw,) of 0.99 and 0.98 respectively, so has little effect-and for most of the 
graph, A >> kT = 0.01t. The analytic damping factor of the previous section is given by 
the continuous line, and only very roughly gives the reduction in amplitude as seen in the 
computational data. In general, the computational data give less damping, which might be 
due to the form of constant A used in the recursion method, which does not give rise to 
a gap in the spectrum as large as IAl. However, the point is made, once again, that the 
presence of a gap, with the loss of Fermi surface, does not completely destroy de Haas-van 
Alphen oscillations, but merely introduces a damping term. 

6. Conclusions 

A Bogoliubov-de Gennes equation of tight-binding form was solved self-consistently with 
Amp&e's law on the lattice using a real space recursion method. It was designed to describe 
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Figure 13. Effect of a pair potential. A = 0.041, 0.101 and 0.181 on the normal de Haas-van 
Alphen oscillations (top), evaluated by the recursion method. 

the quasiparticle spectrum of an Abrikosov flux lattice corresponding to the ground state of 
a type Ii superconductor in a magnetic field. The structure of the ground state was found 
to be that of filled Landau-like states. Based on these and other, approximate, calculations, 
it was argued that the grand potential is an oscillatory function of 1/B,  where B is the 
magnetic field in the sample, with the same frequency as in the normal state without any 
explicitly normal region being present. Furthermore, it was shown that these de Haas-van 
Alphen oscillations are damped by the presence of a gap according to the formula given in 
equation (30). 

Unfortunately, if we choose the gap, E,  in the simple - analytic model for the spectrum 
to be the thermodynamic averaged gap ( X ( B )  s A(O)J-) the damping by 
superconductivity as predicted by the above interpretation of the numerical solutions is 
too high-the experimentally observed damping of the oscillation amplitude corresponds to 
a gap of approximately one third of the thermodynamic value. Thus further investigation 
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of the precise meaning of the effective gap, &,, is required. 
In conclusion, we wish to stress that the real space approach afforded by the recursion 

method proved extremely efficient in describing Landau-like levels, particularly because the 
technique is ideally suited to numerical parallelization. 
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Appendix A. Maxwell’s equations on a lattice 

In order to find the magnetic field due to induced currents, one must solve the relevant 
Maxwell’s equations for the vector potential. These are 

V x V x A(r) = p0jind(r) = p0V x M(r)  (AI) 

where j i . d ( ~ )  is the induced current density, which can be described as the curl of the 
magnetization density, M(r)  and po is the permeability of free space. 

In a discretized version of the above equation, the set of link currents between sites is 
described by a set of loop currents around plaquettes, each of which gives rise to a magnetic 
moment in tbe direction normal to the current loop. The induced magnetization within a 
plaquette is proportional only to the circulating current loop around it. This can be shown 
by the following argument, based on an explicit differentiation of the Hamiltonian with 
respect to tho magnetic field to give the magnetization operator, in the PoincarO gauge [36]. 
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For a time-invariant magnetic field, B(r), in the Poincarb gauge, the vector potential, 
A(r), is given by [37] 

A(r) = [B(hr) x +]Adh. (A2) 1' 
Clearly, this relation is equivalent to the one which defines the symmetric gauge in 
the special case of a magnetic field which is constant throughout space (A'"(T) = 
( B / 2 )  ( - y ,  x .  0)). 

Now the operator for the magnetization per unit volume at a point in space, r ,  is given 
by the functional derivative of the Hamiltonian with respect to the magnetic field at that 
point, B(r) 1311. The magnetic field only occurs in the phase of the hopping integral, so 
the differential of the Hubbard Hamiltonian with respect to magnetic field only contributes 
through kinetic energy terms in the form 

which is 

01 

where 

Aij = (ie/h) l," A(?') . dr '  

and where tiv and Si, are creation and annihilation operators for an electron of spin U on 
site i, and H c  indicates the Hermitian conjugate of the previous term. A link, rC H r,, 
only gives a contribution if it crosses a line drawn from the origin through the point T to 
infinity after it has extended beyond the point T, in this case there is a point, T', on the link 
such that AT' = r, for 0 < A < 1. Such links are shown in figure Al .  

Figure A l .  The link currents which contribute to the magnetization at T ae shown in bold. 
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As will be shown below, the contribution of each link is proportional to the current 
along that link, in the directions indicated in figure Al .  Note that after differentiation, 
equation (A5) reduces to 

where &j is the current operator for link i H j .  

using the Poincar.5 gauge as follows: 
The functional derivative of the line integral of the vector potential, Aij ,  is carried out 

where a change of variable has been made: T" = hr'. The derivative can be taken within 
the integral, and the following identity used: 

which gives a contribution of unity after integration, if the position r is within the triangle 
created by the link i H j and the origin. 

Links are included right to the edge of the sample. Tne link current (labelled 11) at the 
edge of the sample is equal to the circulating loop current around that plaquette (labelled 
C), which borders the sample edge. Addition of the contributing l i i  current, labelled 12, 
gives rise to the loop current around the neighbouring plaquette (labelled D). By continued 
use of the identity, 

1.4 '*P - $P = I* J (A91 
for loop currents circling neighbouring plaquettes, A and B, with link current 1, flowing 
between them, the total sum of link currents indicated in figure A1 is found to be equal to 
the loop current around the plaquette containing r. 

Hence the result follows that the magnetization at a point within a plaquette is only 
due to that plaquette's loop current: M,(T) = I&$ which gives a familiar form for the 
magnetic moment: 

m , ( P )  = M ( T ) .  d S  = @ " a * .  s 
The proof can be readily generalized to any three-dimensional system with two-dimensional 
symmehy. 

To continue then, the set of vector potentials (defined on links) must be found. Using 
Maxwell's equation, the induced flux per plaquette is found as 
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Hence the induced flux through a plaquette is proportional to the loop current flowing 
around it, which means that the difference in flux between two neighbouring plaquettes is 
proportional to the current flowing in the link between them. 

Stokes' theorem is used to obtain a set of vector potentials along links from the fluxes 
through plaquettes. From the identity 

(A121 (V x A i n d ( + ) )  . d S  = 

one obtains for a plaquette 

where the final sum is around links of a plaquette in an anticlockwise direction, of the vector 
potentials Ai, attributed to the link. The arrangement is shown in figure A2. At first sight, 
it may seem that the vector potentials on a link will simply be proportional to the current 
on that link, as the sum of the former around a plaquette is proportional to the loop current 
around that plaquette. However, this is not the case, as the loop current around a plaquette 
is non-local, and dependent on all the link currents in the sample, whereas the magnetic 
flux through a plaquette is dependent only on the vector potentials along links local to the 
plaquette. 

Figure A2. Currents, fields, and potentials for links and plaquertes in a discretized space, 

It should be noted that the number of plaquettes is not equal to the number of links 
associated with any two-dimensional plane. In fact, there are two links per site, but only 
one plaquette, so there are twice as many link currents in a plane as loop currents, and 
twice as many link vector potentials as fluxes through plaquettes. The number of degrees 
of freedom of the link currents is halved (in a 2D problem) by the requirement of current 
conservation at each site. Hence apart from the overall constant, there is a one to one 
correspondence between link and loop currents. However, when finding a set of link vector 
potentials from the fluxes, constraints must be imposed in order to determine a unique set of 
values. These constraints are equivalent to choosing a gauge, which can be represented by a 
set of numbers, (xi), on each site. The constraint is that the sum of vector potentials along 
links to site i is equal to x i .  The Coulomb gauge, for example, which in the continuum is 
given by V . A(T) = 0, becomes on a lattice the condition that xj = 0 for all i .  
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Appendix B. Derivatives of eigenvalues 

To take a derivative of the eigenvalue, EA, with respect to one of the parameters in the 
Hamiltonian, it is efficient to proceed as follows. Recall that 

P Miller and B L G y o m  

EA = (@AI  fi I @ A )  
or 

where H:' is the normal electron Hamiltonian 

Hence taking the derivatives, we have for example 

and 

which are the identities required in section 4. 

Appendix C. The semiclassical approximation 

A semiclassical argument can be followed to produce an approximate form for the energy 
spectnvn of a superconductor in the vortex state. To simplify matters, we drop the periodic 
potential and develop the method for the continuum Bogoliubov-de Gennes equation 

where &r) is the oneelectron Hamiltonian with no external potential, and A(T)  is a given 
pairing potential. We generalize the usual semiclassical theory by assuming that the solution 
of equation (Cl) takes the following form. 

where the real functions S. C, ii and J are slowly varying functions of T.  Substituting 
equation (C2) into equation (Cl), to lowest order in f i  we find that the quasiparticle energy 
eigenvalue, E ,  is given by 

where the phase C(T) is determined by the phase of 

A(T) = IA(P)I &'") (C4) 
via the condition @+ (2F)E = an integer. As usual, at this stage one must find the family 
of orbits in phase space, (VS(T), T ) ,  such that E in equation (C3) is a constant and select 



dHvA oscillations in the superconducting stafe 5605 

from these the orbits for which the wavefunction in equation (CZ) is single valued, namely, 
those satisfying the conditions 

2 f V S .  d r  = m. 
h 

and 

for no and nb integers, either both odd or both even. Note that while the sum and difference 
of the phase integrals (appropriate to either an electron or hole) lead to the usual quantization 
condition of 2 n s ,  individually each one has half the normal quantization, which is essential 
to give the appropriate quantization for Cooper pairs. 

We continue by making use of equation (C3) to make a simple estimate of E. To do this 
we neglect all the complexities introduced by the amplitude variations of A(?) and B ( r )  
with T due to the Abrikosov flux lattice, and replace them by constants, [AI and B.  Then 
by neglecting the cross-term, VS . (VC - eA), and in the Landau gauge, A = -yBB,, 
we find that the energy spectrum becomes 

dS dC * '= ' j (&[(dy - i - dy)  + ( eB)* (y  -yo)' + /AI'. (c5) 

The above equation (C5) contains the form of a simple harmonic oscillator, with 
dSldy i dZ/dy playing the role of the momentum, P, conjugate to a coordinate variable, 
Q = eB(y  -yo). This implies that the conditions 

f d r .  (VS(r) k OX(?)) = 2irn (C6) h 
reduce to the Bohr-Sommerfeld quantization condition as 

f P  dQ = 2rmheB ((3 

and the quasiparticle energy is quantized as follows: 

where o, = e B / m .  Clearly, this spectrum of Landau levels shifted into two square root 
singularitis, with a gap between them, is qualitatively similar to the exact solution described 
by figure 9(a) (except without states in the gap due to normal regions). 
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